11. Richard D. Gill, Comment on “Bell tests explained ....

$25.00 each

All articles published since 1988 (over 1500 articles) can be accessed for only U.S.$139.99 with a special discounted personal online subscription to the journal. Please click here.

For purchase of this item, please read the instructions ACCESS TO THE JOURNAL CONTENT


Volume 36: Pages 87-89, 2023

Comment on “Bell tests explained by classical optics without quantum entanglement” by Dean L. Mamas [Phys. Essays 34, 340 (2021)]

Richard D. Gilla)

Mathematical Institute, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, the Netherlands


In a paper published in the journal [Phys. Essays 34, 340 (2021)], Mamas writes “A polarized photon interacts with a polarizer through the component of the photon’s electric field which is aligned with the polarizer. This component varies as the cosine of the angle through which the polarizer is rotated, explaining the cosine observed in Bell test data. Quantum mechanics is unnecessary and plays no role”. Mamas is right that according to this physical model, one will observe a negative cosine. However, the amplitude of the cosine curve is 50%, not 100%, and it consequently does not violate any Bell-CHSH inequality. Mamas’ physical model is a classic local hidden variables model. The result is illustrated with a Monte Carlo simulation.


Dans un article publié dans cette revue [Physics Essays 34, 340 (2021)], l’auteur D.L. Mamas écrit “Un photon polarisé interagit avec un polariseur à travers la composante du champ électrique du photon qui est alignée avec le polariseur. Cette composante varie comme le cosinus de l’angle de rotation du polariseur, expliquant le cosinus observé dans les données de test de Bell. La mécanique quantique est inutile et ne joue aucun rôle”. Mamas a raison de dire que selon ce modèle physique, on observera un cosinus négatif. Cependant, l’amplitude de la courbe cosinus est de 50%, et non de 100%, et elle ne viole par conséquent aucune inégalité de Bell-CHSH. Le modèle physique de Mamas est un modèle classique à variables cachées locales. Le résultat est illustré par une simulation de Monte Carlo.


Key words: Quantum Entanglement; Bell’s Theorem; EPR Paradox; EPR-B Model; Malus law.


Received: November 3, 2022; Accepted: January 3, 2023; Published Online: January 31, 2023


a) This email address is being protected from spambots. You need JavaScript enabled to view it.