For purchase of this item, please read the instructions
Volume 29: Pages 553-554, 2016
Quantum entanglement does not violate the principle of special theory of relativity
Gyong Luck Khym1,2,3 and Hyung Jin Yang1,3,4,a)
1Center for Information Security Technologies (CIST), Korea University, Seoul 02841, South Korea
2School of General Education, Kumoh National Institute of Technology, Gyeongbuk 730-731, South Korea
3Department of Display and Semiconductor Physics, Korea University, Sejong City 339-770, South Korea
4Graduate School of Information Management and Security, Korea University, Sungbuk-gu Anam 5-ga, Seoul 02841, South Korea
Quantum entangled state suggests a strong correlation between the measurement outcomes of two separated qubits of entangled states. We might imagine that we may use the physical property of the entangled state to communicate with the speed faster than that of light. If such superluminal communication was really possible, it would mean that quantum mechanics does not go well with the special theory of relativity. We will discuss that such communications are not possible, in principle, due to no cloning theorem even though quantum entangled states show strong correlations in measurement outcomes.
L’état d’intrication quantique suggère une corrélation forte entre les résultats de la mesure sur deux qubits séparés d’états d’intrication. On pourrait imaginer qu’il était possible d’utiliser la propriété physique de l’état d’intrication afin de communiquer avec vitesse plus grande que celle de la lumière. Si telle communication super luminaire était vraiment possible, il signifierait que les mécaniques de quantum n’allaient pas bien avec la théorie spéciale de la relativité. Nous allons discuter que telles communications ne sont pas possibles en principe à cause du théorème de non reproduction dû à l’impossibilité d’une reproduction même si les états d’intrication quantiques montrent les corrélations fortes dans les résultats de la mesure.
Key words: Quantum Information; Quantum Entanglement; Quantum Communication
Received: April 18, 2013; Accepted: October 15, 2016; Published Online: November 4, 2016
a)This email address is being protected from spambots. You need JavaScript enabled to view it.
.